(How) does the brain do Bayesian inference?

Sampling, search, and conditional
probability in the mind
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Marr’s levels of analysis for Bayesian
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Today: A review of literature relevant to the algorithmic
level, & discussion of potential directions.



Hypotheses: from conscious
states to percepts




MC(?) MC(?) in the mind overview

1. Brief motivation
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Examples of people “doing Bayesian
inference”

Evidence for computational framing
MCMC for Bayes net demo
Evidence for sampling
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Evidence for Markov chains



Why movement through a hypothesis
space?

“Yet | say again that learning must be nondemonstrative
inference; there is nothing else for it to be. And the only model
of a nondemonstrative inference that has ever been proposed
anywhere by anyone is hypothesis formation and confirmation.”

(Fodor, “Fixation of Belief and Concept Acquisition”)

1. We really don’t have anything else

2. Subjective familiarity of the analogy for explicit problem-
solving

3. “One state at a time”



Why care about algorithms?

[In] most distributional learning procedures there are vast numbers of properties that
a learner could record, and since the child is looking for correlations among these
properties, he or she faces a combinatorial explosion of possibilities. [...] To be sure, the
inappropriate properties will correlate with no others and hence will eventually be

ignored [...], but only after astronomical amounts of memory space, computation, or
both.

(Pinker, Language Learnability and Language Development)

In addition to standard curiosity...

1. Getting from behavioral data to representation of hypotheses and what is
actually being learned requires assumptions about algorithms.

As inspiration for engineering systems for inference

To find out whether Bayesian inference is actually applied to varied problems in
the same way
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IFEqy
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Object A activates the Object B does not
detector by itself activate the detector
by itself

Gopnik et al 2004

Causal inference

Probability of a hidden cause
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Computational-level evidence:
psychological reality of priors
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Computational-level evidence: MCMC
with people

ldea: use people’s 2AFC p(x'|c)

category-membership /ehoee (X X16) = ST
choices as acceptance

function for Markov chain

so it converges to P(x|c)
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Computational-level evidence

* Priming affects spontaneously generated
explanations, but not evaluation of given
hypotheses

— Bonawitz & Griffiths 2008: “Deconfounding
hypothesis generation and evaluation in Bayesian
models”

* Reading time ~ log probability of word (Smith
& Levy 2008)



2.
3.

Algorithmic level: plausibility of MCMC

Alternatives?
— Importance sampling

— Magic to represent hypothesis space exponential in parameters in parallel... phase
relative to a vector of frequencies?

To model exact Bayesian inference (computing the posterior distribution), we
have to make approximations, e.g. MCMC methods.

— ...maybe the system we’re modeling does exactly the same thing.
— Unfounded, but maybe still true.
— And that would be great news about samplers!

If we buy into this framework enough to consider specific algorithms, we
want to be able to identify...

— What is the hypothesis space?
— How do we move from one state to another?
— What does a percept or judgment correspond to; how many samples does it use?

Demo
Monte Carlo: Evidence for sampling
Markov chain: Evidence for movement through a hypothesis space



Demo: Diagnosis net

* Gibbs sampler for
“medical diagnosis”
Bayes net

* Binary nodes, single
layer

* Observes effects, uses
(correct!) structure of
net to wander towards
posterior distribution

P(A) = 0.0001

P(B) = 0.01

P(A) = 0.01

~A A ~A A
~B [.001 |0.99 ~C |.001 |0.99
B 0.99 |[0.995 C 0.99 |[0.995
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Diagnosis net example




III

het

Diagnosis net: simple “causa

15 causes, 50 effects, ~4 causes/effect. P(effect|no cause) =0.1, P(cause) =0.01



Sampling in human cognition

Interpretations:
— Explicit responses are individual samples

— Monte Carlo: approximate a distribution
by a finite number of samples

Probability matching

Phylogenetically old foraging behavior:
Bees in two-armed bandits (Keaser et al

2002)

Adults often probability-match rather than
maximizing (Gardner 1957); children tend
to maximize more (e.g. Hudson Kam &
Newport 2009, in language learning)

But even ten-month-olds are capable of
probability matching (Davis, Newport, &
Aslin 2009)

Evidence of sampling or separate faculty?
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Population responses as samples

* Sampling hypothesis:

variation in judgments
reflects the true
distribution
* Population level: |- . - -
Within Domain Cross Domains

graded fractions of
correct responses as
indirect evidence

Schulz, Bonawitz, & Griffiths 2007
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Within-subject responses as samples

“What percentage of the world’s
airports are in the United States?”

700 Guess 1
Guess 2

. Average

650

600

550

500

Mean Squared Error

450

400
Immediate 3-week delay
Vul & Pashler 2008: “the crowd within”
Analogous results for visual attention
(Vul, Hanus, & Kanwisher 2010)

Denison et al 2009: “Preschoolers sample

from probability distributions”

Responses Expectation Long Wait  Short Wait
red,red,red 512 10 1
red.red,blue A28 I |
red,blue,red 128 2 10
red.blue,blue 032 3 0
blue,red.red 128 0 1
blue,red.blue 032 I 6
blue,blue,red 032 I 1
blue,blue.blue 008 2 0

Bonawitz et al. “Rational randomness”
* Follow-up experiments showed
children were not just doing probability

matching to chip frequencies

* Correlation between hypotheses
consistent with win-stay lose-shift

mechanism but not independent

sampling
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Sampling in intuitive physics?

What would sampling (more uniquely) B. Trajectory, Direction:
. ] *
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* Precision of posthoc judgment of a and human direction,
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on conditional probability

* Potential improved precision over time
if objects pulled toward some location,
in contrast with simple propagation of
uncertainty

Increasing model variance —

Hamrick, Battaglia, & Tenenbaum 2011



Monte Carlo estimates: a caveat

“One and Done”

’ Often JUSt a few 30— Correct: +1; Incorrect: 0
Samples |S plenty for _'—Gorrectzﬂ:lnmrrect; -1
practical purposes

* Adding any cost to
sampling can even
make getting just one

[ ]
=

Optimal number of samples
per decision
=

rational | ,

’ SO hOW Can We Sltuate G 1 | Acti:l::?w'Sample coflgjratim 1000
ourselves to grab a -Samples are from a Bernoulli
good ”jUSt one”? distribution, p ~ uniform

*Action is prediction of next outcome

Vul, Goodman, Griffiths, Tenenbaum 2008
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Kinship
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1. Current theory: Theory B

/ Mﬂ «— HHIARY)
interacts (X1} +— %) Agv)

2. Probabilistically propose an
alternative theory: Theory C
interacts(X,Y) +— f{X) AfiY)
interacts(X.Y) +— X)Ag(Y)
interacts(X.Y) «— interactsy X)

%Q:} 3. Compare current and
'?%% proposed theories

—_—>

Ullman, Goodman, Tenenbaum 2012
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Figure 7: Representative runs of theory learning in Magnetism. (a) Dashed lines show
different runs. Selid line 1= the average across all runs. (b) Highlighting a particular run,
showing the acquisition of law 1 and the confounding of magnets and magnetic (but non-
magnet) objects, the discarding of an unnecessary law which improves the theory prior,

and the acquisition of the final correct theory.

Ullman, Goodman, Tenenbaum 2012
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Hypothesis space search: explicit
hypotheses

e MCMC with an appropriate grammar can capture some
gualitative features of children’s learning. What sort of
evidence would admit differential predictions?

— Basic: temporal correlation of hypotheses (often
demonstrated)

— Dependence of likely paths (and perhaps thereby
posterior) on grammar used to generate hypotheses

— Lack of effect of having considered and rejected a
hypothesis already (special case of Markov property—no
history used)

— Effects of steepness around an attractive solution, rather
than just its likelihood?



Markov chain example in perception:
multistable percepts

* Used Markov random field (MRF) lattice model,;
MCMC to infer hidden cause of image

e Recovered...

— gamma-distributed dominance times,
— bias due to context,

— situations that lead to fusion,
— switches occurring in travelling waves
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Possible directions

* “More cognitive” samplers

— Allow uncertainty about the data

— “Focus of attention,” sense of how the current
hypothesis is lacking

— Dealing with uncertainty about the model

* Experimental design to test predicted
differences in dynamics, performance

* (How) do we constrain the hypothesis space
to generate appropriate explanations?



