3-D clustering to identify multiple oligomerization states by FRET

Kim Scott
Mentor: Henry Lester
SURF Seminar Day: October 17, 2009
Nicotinic Acetylcholine Receptors (nAChRs)

- Pentameric ion channels found throughout the brain
- Composed of a variety of possible subunits in varying stoichiometries
- Open in response to acetylcholine (naturally), nicotine (much stronger!)
- Presumed to underlie the mechanisms of nicotine addiction, tolerance, & withdrawal... plus its protective effect against Parkinson’s

\[(\alpha_4)_3(\beta_2)_2:\]
EC50 ~100μM

100 times as sensitive!
FRET microscopy

(Vogel et al., 2006)
Extending FRET to study stoichiometry

Goal: to estimate the prevalence of distinct nAChR stoichiometries from the distributions of donor, acceptor, and net FRET pixel values.

Challenges:

• Multiple stoichiometries of assembled receptors, partially assembled receptors of unknown geometry, and unpaired donors and acceptors all present.

• Heterogeneous population even within single pixels

• Unknown subcellular localization of FRETing oligomers

(Son et al., 2009)
Current NFRET histogram analysis

Raw data

unmixing

FRET

donor (D)

acceptor (A)

PixFRET bleedthrough compensation

net FRET (nF)

normalization:

\[
\frac{nF}{\sqrt{A \cdot D}}
\]

NFRET

Fig 8H, Moss et al., submitted to JGP
Dangers of fitting NFRET histograms

Single oligomer NFRET values with
\(nF \sim N(1, 0.2) \)
\(A \sim N(10, 4) \)
\(D \sim N(10, 4) \)

\[
NFRET = \frac{nF}{\sqrt{A \cdot D}}
\]

(Xia and Liu, 2001)

1) NFRET distribution from a single oligomer with varying nF, A, and D measurements is skew.
Dangers of fitting NFRET histograms

\[\text{NFRET} = \frac{nF}{\sqrt{A \cdot D}} \]

(Xia and Liu, 2001)

Given that a fraction \(f \) of the total FRETing constructs are of type A, the NFRET value

\[T(f) = \frac{f nF_a + (1 - f) nF_b}{\sqrt{(f A_a + (1 - f) A_b)(f D_a + (1 - f) D_b)}} \]

2) NFRET from multiple species combines nonlinearly (sometimes non-monotonically)
Dangers of fitting NFRET histograms

3) Even “ideal” situations (with no variation in nF, A, and D) give skew distributions of NFRET values.
The case for direct clustering instead

• Why collapse 3D information to 1D unnecessarily?
• Clustering automatically assigns pixels to populations.
• Deals more readily with unpaired fluorescence.
Two pure population model

Species A, mean NFRET 0.1:
- \(nF \sim N(1, 0.2) \)
- \(A \sim N(7, 0.7) \)
- \(D \sim N(14, 1.4) \)

Species B, mean NFRET 0.125:
- \(nF \sim N(1.25, .25) \)
- \(A \sim N(14, 1.4) \)
- \(D \sim N(7, 0.7) \)
Segments with unpaired donor/acceptor

- Same species A and B, concentrations [100 50 50] and [50 100 50]
- Total unpaired concentration [25 25 25]
- Unpaired fluorophores have same properties as lesser of donor & acceptor in FRETing species
Choice of clustering algorithm

• Projective k-means
 – Clusters points along lines (representing varying concentrations of a single ratio of species, plus unpaired fluorescence)
 – Doesn’t split high- and low-concentration regions

• Gaussian mixture (GM) model
 – Fits points to a set of Gaussian clusters
 – Doesn’t ignore concentration
 – May be more robust to impure “segmentation”

Both easily extended to probabilistic clustering.
25 images each, 2000 pixels per image. 20% uncertainty in nF, 10% in A and D
Average concentration 10 oligomers (small) in both populations.
Performance of GM clustering

• Accurately and reproducibly clusters pixels from pure-population and segmented models, even with unpaired fluorescence

• Consistently identifies the number of clusters using Bayesian information criterion (introduces a parameter penalty to avoid overfitting)
Next steps

• Next focus is on clustering real data from two experiments: with three and one putative populations of nAChRs

• Use of membrane-specific and non-FRETing distributions to calibrate expected clusters

• Modeling varied transfection ratios and matching clusters across cells
Acknowledgments

Henry Lester
Fraser Moss
Rigo Pantoja
Rahul Srinivasan
Crystal Dilworth
Lester lab
Amgen Foundation
Caltech SFP office