

3-D clustering to identify multiple oligomerization states by FRET

Kim Scott Mentor: Henry Lester SURF Seminar Day: October 17, 2009

Image: Son et al. 2009

Nicotinic Acetylcholine Receptors (nAChRs)

(α4)₃(β2)₂: EC50 ~100μM

 $(\alpha 4)_2(\beta 2)_3$: 100 times as sensitive!

- Pentameric ion channels found throughout the brain
- Composed of a variety of possible subunits in varying stoichiometries
- Open in response to acetylcholine (naturally), nicotine (much stronger!)
- Presumed to underlie the mechanisms of nicotine addiction, tolerance, & withdrawal... plus its protective effect against Parkinson's

FRET microscopy

Extending FRET to study stoichiometry

Goal: to estimate the prevalence of distinct nAChR stoichiometries from the distributions of donor, acceptor, and net FRET pixel values.

Challenges:

- Multiple stoichiometries of assembled receptors, partially assembled receptors of unknown geometry, and unpaired donors and acceptors all present.
- Heterogeneous population even within single pixels
- Unknown subcellular localization of FRETing oligomers

Dangers of fitting NFRET histograms

1) NFRET distribution from a single oligomer with varying nF, A, and D measurements is skew.

Dangers of fitting NFRET histograms

2) NFRET from multiple species combines nonlinearly (sometimes non-monotonically)

Dangers of fitting NFRET histograms

Two independently normally-distributed species with fixed nF, A, and D values per oligomer:

3) Even "ideal" situations (with no variation in nF, A, and D) give skew distributions of NFRET values.

The case for direct clustering instead

- Why collapse 3D information to 1D unnecessarily?
- Clustering automatically assigns pixels to populations.
- Deals more readily with unpaired fluorescence.

Two pure population model

Species B, mean NFRET 0.125:

nF ~ N(1.25, .25) A ~ N(14, 1.4)

D ~ N(14, 1.4) $D \sim N(7, 0.7)$

Segments with unpaired donor/acceptor

- Same species A and
- B, concentrations [100 50 50] and [50 100 50]
- Total unpaired concentration
- [25 25 25]
- Unpaired
 fluorophores have
 same properties as
 lesser of donor &
 acceptor in FRETing
 species

Choice of clustering algorithm

• Projective k-means

- Clusters points along lines (representing varying concentrations of a single ratio of species, plus unpaired fluorescence)
- Doesn't split high- and low-concentration regions

• Gaussian mixture (GM) model

- Fits points to a set of Gaussian clusters
- Doesn't ignore concentration
- May be more robust to impure "segmentation"

Both easily extended to probabilistic clustering.

Performance of GM clustering

25 images each, 2000 pixels per image. 20% uncertainty in nF, 10% in A and D Average concentration 10 oligomers (small) in both populations.

Performance of GM clustering

- Accurately and reproducibly clusters pixels from pure-population and segmented models, even with unpaired fluorescence
- Consistently identifies the number of clusters using Bayesian information criterion (introduces a parameter penalty to avoid overfitting)

Next steps

- Next focus is on clustering real data from two experiments: with three and one putative populations of nAChRs
- Use of membrane-specific and non-FRETing distributions to calibrate expected clusters
- Modeling varied transfection ratios and matching clusters across cells

Acknowledgments

Henry Lester Fraser Moss Rigo Pantoja Rahul Srinivasan **Crystal Dilworth** Lester lab **Amgen Foundation** Caltech SFP office