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Nicotinic Acetylcholine Receptors (nAChRs) 

2 

α 

β 

α α 

β 

α 

β 

α β 

β 

• Pentameric ion channels found 
throughout the brain 

• Composed of a variety of possible 
subunits in varying stoichiometries 

• Open in response to acetylcholine 
(naturally), nicotine (much 
stronger!) 

• Presumed to underlie the 
mechanisms of nicotine addiction, 
tolerance, & withdrawal… plus its 
protective effect against Parkinson’s (α4)2(β2)3: 

100 times as sensitive! 

(α4)3(β2)2: 
EC50 ~100μM 
  

 



FRET microscopy 

3 (Vogel et al., 2006) (Wang et al., 2008) 

FRET no FRET 



Challenges: 

• Multiple stoichiometries of  assembled receptors, 
partially assembled receptors of unknown geometry, and 
unpaired donors and acceptors all present. 

• Heterogeneous population even within single pixels 

• Unknown subcellular localization of FRETing oligomers 
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Donor  Acceptor  FRET Goal: to estimate the 
prevalence of distinct 
nAChR stoichiometries 
from the distributions of 
donor, acceptor, and net 
FRET pixel values. 

Extending FRET to study stoichiometry 

(Son et al., 2009) 



Current NFRET 
histogram analysis 

Fig 8H, Moss et al., submitted to JGP 
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Dangers of fitting NFRET histograms 

1) NFRET distribution from a single oligomer with 
varying nF, A, and D measurements is skew. 

Single oligomer NFRET 
values  with  
nF  ~  N(1, 0.2)  
A    ~  N(10, 4) 
D    ~  N(10, 4) 
 

DA

nF
NFRET




(Xia and Liu, 2001)  
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Dangers of fitting NFRET histograms 

2) NFRET from multiple species combines 
nonlinearly (sometimes non-monotonically) 

Given that a fraction f of the total FRETing 
constructs are of type A, the NFRET value 
T(f) =  

DA

nF
NFRET




(Xia and Liu, 2001)  
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Dangers of fitting NFRET histograms 

3) Even “ideal” situations (with no variation in nF, A, 
and D) give skew distributions of NFRET values. 

←A:B ratio 

Two independently normally-distributed species 
with fixed nF, A, and D values per oligomer: 
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The case for direct clustering instead 

• Why collapse 3D 
information to 1D 
unnecessarily? 

• Clustering automatically 
assigns pixels to 
populations. 

• Deals more readily with 
unpaired fluorescence. 
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Species A, mean NFRET 0.1:   nF ~ N(1, 0.2)  A ~ N(7, 0.7)  D ~ N(14, 1.4) 
Species B, mean NFRET 0.125:  nF ~ N(1.25, .25)  A ~ N(14, 1.4)  D ~ N(7, 0.7) 

Two pure population model 



Segments with unpaired donor/acceptor 
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•   Same species A and 
B, concentrations 
[100 50  50] and 
[  50 100 50] 
•   Total unpaired 
concentration 
[  25  25  25] 
•   Unpaired 
fluorophores have 
same properties as 
lesser of donor & 
acceptor in FRETing 
species 



Choice of clustering algorithm 

• Projective k-means 
– Clusters points along lines (representing varying 

concentrations of a single ratio of species, plus 
unpaired fluorescence) 

– Doesn’t split high- and low-concentration regions 

• Gaussian mixture (GM) model 
– Fits points to a set of Gaussian clusters 

– Doesn’t ignore concentration 

– May be more robust to impure “segmentation” 

Both easily extended to probabilistic clustering. 
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Performance of GM clustering 
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25 images each, 2000 pixels per image.  20% uncertainty in nF, 10% in A and D 
Average concentration 10 oligomers (small) in both populations. 
 



Performance of GM clustering 
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• Accurately and reproducibly clusters pixels 
from pure-population and segmented models, 
even with unpaired fluorescence 

• Consistently identifies the number of clusters  
using Bayesian information criterion 
(introduces a parameter penalty to avoid 
overfitting) 



Next steps 

• Next focus is on clustering real data from two 
experiments: with three and one putative 
populations of nAChRs 

• Use of membrane-specific and non-FRETing 
distributions to calibrate expected clusters 

• Modeling varied transfection ratios and 
matching clusters across cells 
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