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Abstract:  Fluorescence resonance energy transfer (FRET) microscopy is commonly used to measure distances 

between fluorophores or to qualitatively confirm interaction of proteins.  Whereas multiple FRETing 

oligomerization states may be characterized clearly using single-molecule techniques, cellular applications suffer 

from wide and immeasurable variability in concentration of each species across pixels.  Several examples are 

presented to demonstrate the inapplicability of Gaussian mixture model fitting to normalized FRET distributions to 

the problem of identifying populations of pixels of similar oligomerization state ratios.  Instead, a direct clustering 

approach is developed in which each pixel is considered as a (FRET, acceptor, donor) triplet and assigned a 

probability of belonging to each of several clusters.  The probabilities may be used to create an informative colored 

map of the cell indicating the locations of the various oligomer types. 

Fluorescence resonance energy transfer 

Fluorescence resonance energy transfer (FRET) occurs when a donor fluorophore in an excited state 

excites a donor fluorophore in the ground state through dipole-dipole interaction, without the transfer of a 

photon.  The donor is excited by a laser near the peak of its absorption spectrum, and FRET is detected by 

recording fluorescence near the peak of the acceptor emission spectrum.  Both donor and acceptor 

fluorescence are also measured so that the efficiency and not just the strength of interaction may be 

computed. 

The distance at which resonance energy transfer is 50% efficient, called the Förster radius, is typically 20 

to 90 Å.  As the efficiency of energy transfer is proportional to R
-6

, where R is the distance between donor 

and acceptor fluorophore, FRET microscopy is well-suited to the detection of oligomerization of proteins 

with attached fluorophores.  Typical uses of this technique include measuring distances between 

fluorophores and qualitatively detecting covalent interaction  (Lakowicz 2006). 

Recent studies from the Lester lab at Caltech (Drenen et al. 2008, Son et al. 2009) have used FRET 

microscopy to study interactions among the subunits that make up nicotinic acetylcholine receptors 

(nAChRs), a class of pentameric ion channels.  Whereas muscle nicotinic receptors have fixed 

composition, neuronal receptors may be composed of various combinations of subunits.  Stoichiometry as 

well as presence of specific subunits determines sensitivity; for instance, the ( 4)2( 2)3  receptor has 

EC50 ~1μM, whereas the ( 4)3( 2)2 receptor is 100 times less sensitive.  Upregulation of receptors in 

response to chronic nicotine exposure favors the high-sensitivity stoichiometry (Lester et al., 2009, 

review).  A method is required for determining, from FRET images, the relative abundances of the 

various stoichiometries. 

Current analytical techniques 

The distributions of FRET efficiencies for multiple conformational states have been characterized for 

single-molecule FRET studies, which require a very dilute solution of fluorophores so that each pixel 

contains at most one FRET pair (Best 2007).  In contrast, live cells may contain tens to hundreds of 

FRETing oligomers, as well as unpaired donors and acceptors.  Partially assembled receptors (dimers and 

tetramers) may also be present in unknown geometries.  Whereas the overall ratio of donor to acceptor 

may be measured in addition to FRET efficiency (Chen et al. 2006), the presence of multiple similar 



stoichiometries of assembled receptors among unpaired and partially-assembled receptors has not been 

studied. 

One standard approach that hopes to distinguish among stoichiometries involves normalizing the FRET 

intensities according to Xia and Liu (2001): 

 NFRET    (Eqn 1) 

where the net FRET signal nF is defined by 

nF = IFRET – IA x BTA – ID x BTD  (Eqn 2) 
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IFRET, IA, and ID are the intensities of FRET, acceptor, and donor fluorescence respectively; BTA and BTD 

are the bleedthrough coefficients for expected emission at the acceptor emission peak by the acceptor and 

donor due to excitation at the donor acceptance peak.   The normalization procedure prevents the 

concentration of oligomers from influencing the NFRET value.  Normalization is performed pixel-by-

pixel using the ImageJ plugin PixFRET (Feige et al. 2005). 

NFRET values are computed pixel-by-pixel and plotted in a histogram, sometimes monomodal, which is 

then fitted to a 2- or 3- component Gaussian mixture model (see Figure 1 for an overview of this 

approach).  The components are assumed to represent collections of pixels which primarily contain one 

Figure 1: Analysis of FRET intensity data NFRET 

histogram analysis.  After the raw data 

undergoes spectral unmixing to give FRET, 

donor, and acceptor measurements (right), the 

normalization procedure gives values for each 

pixel which are plotted in a histogram (below).  



oligomerization state, with overlap due to the various possible combinations of states in a pixel.  This 

approach can distinguish several components of NFRET distributions (Moss et al., manuscript).   

Fitting NFRET distributions to Gaussian mixture models, however, runs the risk of confusing skewness 

of the distribution due to the normalization method and distribution of oligomers with the presence of 

clearly-separated multiple populations.  I present here an approach which relies directly on the three-

dimensional data (nF, acceptor, and donor fluorescence intensities) to more accurately identify the 

stoichiometries present.  This clustering approach can distinguish among mixed populations of receptors 

with subtly different ratios, even in the presence of unpaired fluorescence, and determine the appropriate 

number of clusters.  It also automatically assigns pixels to populations, creating an informative map of the 

cell.  

The case against fitting NFRET distributions to Gaussian mixture models 

1. The NFRET value due to populations of two species with different pure NFRET values is 

generally nonlinear and not guaranteed to be monotonic.  Given that a fraction f of the total 

FRETing constructs are of type A, the NFRET value  

T(f) =   (Eqn 3) 

Figure 1 shows the total NFRET value in a single pixel with varying fractions of species A 

(NFRET value 0.1) and species B (NFRET value 0.2).  Unless the denominator of T is constant, 

e.g. if Aa = Ab and Da = Db, the NFRET value is nonlinear in f; additionally, for large differences 

between the donor:acceptor (D:A) ratio for species A and B, the NFRET value becomes 

nonmonotonic, i.e. the FRET value does not uniquely identify a ratio of species A to species B.  

(See Figure 2).   

2. Even with linear dependence on relative concentration, two populations binomially and 

independently distributed across the cell give skew NFRET distributions.  The probability of a 

single pixel having NFRET value F is in this case  

 (Eqn 4) 

Figure 2 (left): NFRET 

value of a single pixel with 

varying contributions from 

species A and B. 



The distribution of NFRET values is plotted for several cases in Figure 3.  The skewness of the 

curves indicates that fitting to a Gaussian mixture model would be uninformative—a more skew 

curve requires more Gaussian components to fit, but the number and position of these 

components is not directly informative. 

 
3. Modeling the image as having three compartments—high A, low B; low A, high B; and ―overlap‖ 

with equal low concentrations of A and B—demonstrates that the peaks of the NFRET 

distribution move in response to the concentration ratios (high:low), with the number of 

observable peaks dependent on the number of ―compartments,‖ the degree of overlap, and again 

the ratio fo high:low concentration.  Figure 4 shows several such distributions, all with 1:1 ratios 

of total A:B expression and linear NFRET as described in point (1). 

 
 

 

 

4. Variation in single-species nF, acceptor, and donor fluorescence values yields highly skew 

distributions of NFRET values even for a single species, as shown in Figure 5. 

Figure 3 (left): NFRET value probability 

density function for several ratios of species 

A:B.  Species A has NFRET value 0.1; species 

B, 0.2.  Their acceptor to donor fluorescence 

ratios are both 1:1, so the skewness of the 

green and yellow curves is not due to 

nonlinear NFRET values as explained in (1). 

Figure 4 (above): NFRET probability distributions for a multiple-compartment model; each distribution is the 

sum of mostly-A, mostly-B, and “overlap” compartments. 



 

NFRET is a poor normalization method for our purposes because it cannot uniquely identify 

stoichiometry ratios even under ideal circumstances.  Fitting to Gaussians is dangerous because there are 

several sources of skewness inherent in the method.  Additionally, it would be computationally 

prohibitive to compute the exact expected distribution of NFRET given all sources of variation. 

The case for clustering in three dimensions 

While normalization of FRET intensity to account for concentration is worthwhile, the NFRET procedure 

collapses a 3D datum at each pixel (nF, A, D) into a single datum, losing information.  For instance, we 

would be powerless to make any distinction between two species with equal nF values but reversed A and 

D values using NFRET alone.  It is, fortunately, unnecessary to normalize: instead, we should consider 

the (nF, A, D) triplets directly and attempt to cluster them along lines to identify populations of FRETing 

species. 

Even when the NFRET histogram shows clear multiple peaks, Gaussian fitting cannot tell us which pixels 

belong to which distribution in the ―overlap‖ region, which is often biologically relevant: for instance, are 

all the pixels of one distribution nearer the periphery?  Clustering the pixels directly in 3-space gives us 

this information automatically.  Ambiguous points may be assigned probabilities (―soft clustering‖) of 

belonging to three populations, and those probabilities mapped to color to produce a map of the cell. 

Evaluation of clustering performance 

Two clustering approaches were considered: fitting the (nF, A, D) triples directly to a Gaussian mixture 

model and using a projective k-means clustering algorithm to find lines (corresponding to specific 

stoichiometries or mixtures of stoichiometries) around which points were concentrated.  Although both 

performed well in simple models (e.g. perfectly separated pure oligomer populations), Gaussian mixture 

(GM) clustering was more robust to unpaired fluorescence and other, more complex situations; further 

evaluation focused on this method.  The Bayes Information Criterion (BIC) was used to identify the 

appropriate number of cluster centers.  After identifying cluster means and variances in each dimension, 

posterior probabilities of each point belonging to the various clusters were computed and used to map  

Figure 5 (left): NFRET pdf for a single-oligomer 

measurement when nF~N(1,0.2), A~N(10,4), 

and D~N(10,4). 



First, GM clustering was evaluated on a pure-population model in which each pixel expressed an average 

of 10 oligomers (binomially distributed) of one of two types, with varying fractional difference in nF 

mean.  For each degree of separation, 25 ―images‖ of 2000 pixels each were used.  Figure 6 shows the 

mean and upper percentiles of the mistaken probability per pixel—the likelihood assigned by the 

algorithm that a given pixel belonged in the wrong cluster.  At all fractional differences tested,  two 

clusters were identified.  Less than 5% of pixels were misclassified for fractional differences in nF > 0.3. 

 

 

Next, GM clustering was tested on the segmented image model discussed in point (3).  Figure 7 shows the 

mean and upper percentiles of mistaken probability per pixel in this case.  Until the ratio of low to high 

concentration in each compartment exceeds 0.5, less than 5% of pixels are misclassified.   

Note that normalization of concentration could eliminate one dimension on the plot; for instance, we 

could work only with nF/A and D/A instead of A, D, and nF.  However, it is easier to work with 

approximately normally-distributed values of A, D, and nF than the distributions that result from moving 

a random variable to the denominator.  Additionally, unpaired donor and acceptor fluorescence will 

simply shift a population on the 3-D plot without changing the slope, allowing us to focus on clustering 

around straight lines.  

Figure 6 (left): Performance of GM clustering in 

the simplest case, two pure populations of 

oligomers with varying degrees of separation in 

NF values.  Below: two populations identified, 

one in red and one in blue. 



 

Discussion 

While GM clustering is a promising approach for distinguishing among populations of varying 

stoichiometries of receptor throughout a cell, it requires rigorous testing on real datasets.  In actual cells, 

membrane-specific and non-FRETing distributions may be used to calibrate expected cluster centers.  

Additionally, a method needs to be developed to allow the matching of identified clusters across cells 

with varying expression levels of each fluorescent construct due to individual differences as well as 

systematic variation of transfection ratios. 
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