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7.  Artificial neural networks 
 
 
 
 
 
 

 

Introduction to neural networks 

 
Despite struggling to understand intricacies of protein, cell, and network function within the brain, 
neuroscientists would agree on the following simplistic description of how the brain computes:  Basic 
units called "neurons" work in parallel, each performing some computation on its inputs and passing 
the result to other neurons.  This sounds trivial, but borrowing and simulating these essential features 
of the brain leads to a powerful computational tool called an artificial neural network.  In studying 
(artificial) neural networks, we are interested in the abstract computational abilities of a system 
composed of simple parallel units.  Although motivated by the multitude of problems that are easy for 
animals but hard for computers (like image recognition), neural networks do not generally aim to model 
the brain realistically. 
 
 

 
 
 
 
 
 
 

  
In an artificial neural network (or simply neural network), 
we talk about units  rather than neurons.  These units are 
represented as nodes on a graph, as in Figure [].  A unit 
receives inputs from other units via connections to other 
units or input values, which are analogous to synapses.  The 
inputs might represent, for instance, pixels in an image that 
the network must classify as a dog or a cat. 
 
If we focus on one particular unit, the connections that 
point to it are like dendrites—they bring information to the 
unit from others.  Some connections have more influence 
on the unit, and some may actually act in opposing 
directions—just like there are excitatory and inhibitory 
synapses of varying strengths and at varying locations on a 
neuron.  In biology, this would be referred to as synaptic 
strength; in a neural network, it is called the weight of a 
connection.   

Biological terminology Artificial neural network terminology 

Neuron Unit 

Synapse Connection 

Synaptic strength Weight 

Firing frequency Unit output 

Table 1 (left): Corresponding terms 
from biological and artificial neural 
networks.  Adapted from Adapted 
from Mehrotra, Mohan, & Ranka.   
Figure 1 (below): Schematic diagram of 
a standard neural network design.  
Signals pass from the input units 
through a hidden layer to an output 
unit. 
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The connections pointing away from a unit are like its axon—they project the result of its computation 
to other units.  This output is analogous to the firing rate of a neuron.  The neural networks we will study 
work on an arbitrary timescale and do not “fire action potentials,” although some types of neural 
networks do. 
 
There are many types of neural networks, specialized for various applications.  Some have only a  single 
layer of units connected to input values; others include “hidden” layers of units between the input and 
final output, as shown in Figure 1.  If there are multiple layers, they may connect only from one layer to 
the next (called a feed-forward  network), or there may be feedback connections from higher levels back 
to lower ones, as we see in cortex.   
 
Neural networks can “learn” in several ways: 

 Supervised learning is when example input-output pairs are given and the network tries to 
agree with these examples (for instance, classifying coins based on weight and diameter, given 
labeled measurements of pennies, nickels, dimes, and quarters) 

 Reinforcement learning is when no “correct” answer is given along with the input data, but the 
network’s performance is “graded” (for instance, it might win or lose a game of chess) 

 Unsupervised learning is when only input data are given to the network, and it finds patterns 
without receiving direct feedback (for instance, recognizing that there are four types of coins 
without assigning the labels “penny,” “nickel,” “dime,” “quarter”)  

 
We will focus on supervised learning.  They can also perform “association” tasks, for instance 
reproducing a full image from a small piece. 
  

The learning problem 

 
If you show a picture to a three-year-old and ask him if there is a tree in it, he is likely to give you the 
right answer. If you ask a thirty-year-old what the definition of a tree is, he is likely to give you an 
inconclusive answer. We didn't learn what a tree is by studying the mathematical definition of trees. We 
learned it by looking at a lot of trees. In other words, we learned from data.  
Yaser Abu-Mostafa 
 
Neural networks are most commonly used to “learn” an unknown function.  For instance, say you want 
to classify email messages as spam or real.  The ideal function is one that always agrees with you, but 
you can’t describe exactly what criteria you use.  Instead, you use that ideal function—your own 
judgment—on a randomly selected set of messages from the past few months to generate training 
examples.  Each training example is simply an email message with a correct label, either “spam” or 
“real.” 
 
You decide to automatically classify the message based on how many times each word on a list appears.  
You will multiply each frequency by some value, add up these products, and if they exceed some 
threshold, the message will be labeled spam.  Your strategy provides you with a set of candidate rules 
(corresponding to the possible multipliers and thresholds) for deciding whether a message is spam.  
Learning then consists of using the training examples to pick the best rule from this set.  (There might be 
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better ideas, for instance taking into account grammar or the sender’s email address, but we aren’t 
concerned with those during the formal process of learning.) 
 
Once you come up with a rule, its performance is evaluated on a test set.  The test set is essentially a 
spare training set: it consists of inputs (in this case emails) with correct labels (“spam” or “real”).  You 
use your rule to classify the inputs in the test set and compare the results to the correct labels to see 
how you did.  This is a crucial step that allows us to estimate how well our rule will do when we start 
using it on our email.  Because we have specifically worked to make our rule agree with the training 
examples, its performance on those training examples is artificially inflated.  Your rule may perform 
slightly better or worse on the test set than on emails in general, but at least this estimate of its 
performance is unbiased.  In order to draw meaningful conclusions from the test set, we need to be 
careful not to contaminate it by using it to select a rule.  If our rule doesn’t do well on the test set and 
we go back to adjust it, we need to use a new test set. 
 
You can think of training examples as last year’s exam that you study from, and the test set as the actual 
exam your teacher gives.  Making sure you can do all of last year’s problems should improve your grade, 
but being able to do all of the practice problems (after seeing the answers!) doesn’t mean you’ve 
mastered the subject.  And if you do poorly on the exam and your teacher lets you retake it, you 
shouldn’t get the same questions again! 
 
It may seem strange that we can learn a completely unknown function with any confidence.  The key is 
that the training and testing examples are selected randomly from the same population of inputs we 
care about being able to process correctly.  Using laws of probability, we can put an upper bound on the 
chance that the “out-of-sample” (non-training) error will be very different from the “in-sample” 
(training) error. 
 

Linear threshold units 

 
The rule we described for classifying emails was actually a computation that could be performed by a 
“artificial neuron” called a linear threshold unit (LTU), shown in Figure 2.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LTU 

x0 = -1 

x2 

x3 

x1 

xn 

… 

w0 

w2 

w1 

… 

w3 

wn 

s f(s) 



104 | P a g e  

 

 
 

An LTU receives scalar inputs 0 1 2, , , , nx x x x  and first computes the weighted sum 

0 0 1 1 2 2 n ns w x w x w x w x     .  (We could also write this as 
0

i n

i i

i

w x




  or the dot product w x .)   

If 0s  , then the LTU outputs f(s) = 1; otherwise, it outputs f(s) = -1.  This is known as a “hard 
threshold” and represents a decision about or classification of the input data. Many neural networks use 
a soft thresholding function, in which the output is always between -1 and 1 but does not “jump” from 
one to the other. 
 

The input 0x  is special; it is always 1 .  This effectively implements a nonzero threshold for the 

weighted sum of the actual inputs.  At the boundary between the neuron outputting -1 and 1, 0s  , so 
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The special weight 0w  is often called the LTU’s threshold.  The plane of values 1 2 3( , , , , )nx x x x  that 

leads to 0s   is called the decision boundary because on one side the LTU outputs 1 and on the other 
side it outputs -1. 
 
An important consequence of using the weighted sum s is that an LTU can only learn to distinguish 
between sets that are indeed separated by some plane, as shown in Figure 3. 
 
 
 
 
 
 
 
 
 

Let’s do an example computation of an LTU’s output.  Here is a unit that receives two inputs besides 0x : 

 
 
 
 
 
 
 
 

In this case, 3 ( 1) 1 5 ( 1) 0 2s          , which is positive, so ( ) 1f s  .  The decision boundary is 

shown in Figure 4. 
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Figure 3: A single LTU 

could distinguish between 

circles and triangles only in 

the case on the left.  In the 

other two examples, there 

is no line dividing the two 

groups. 
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In class, we will study the perceptron learning rule, which provides a way to adjust the weights of an LTU 
based on a training set.  As long as it is possible for an LTU to distinguish between the input classes, the 
perceptron learning rule will eventually find a correct decision boundary. 
 

Storing memories in a neural network 

 
Besides learning unknown functions, neural networks can also be used to associate an input pattern (for 
instance, an incomplete or corrupted version of an image) with a stored “memory.” This is a common 
problem in everyday life: we associate people’s names with their faces and other characteristics, for 
instance, and can often call up a complete song (“by the dawn’s early light”) or story (“and he puffed 
and he blew the house down!”) from just a few notes or words.  Children practice their animal sounds 
(“What does the dinosaur say?”) before they even have experience with the animals. 
 
We will study one of the most commonly used implementations of “memory” in an artificial neural 
network, a discrete Hopfield network.  This network is made up of connected linear threshold units (the 
output of one becomes the input to another) whose output can be either -1 or 1 at any given time.  A 
memory then corresponds to a state of the network, meaning the current output of each unit.  One 
natural type of memory for a discrete Hopfield network is a binary image, in which each pixel (a unit) is 
either white (output 1) or black (output -1).   
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Figure 5: Decision boundary for the LTU shown in 

Figure 4.  To find the boundary we set 0s  , so  
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Check a few points, such as (5,0) as shown in the 

example in Figure 4, to check that the decisions shown 

on this plot agree with the output of the LTU. 

 

-1 1 

-1 

-1 -1 

1 

Figure 6: A small discrete Hopfield 

network (left) and the image its state 

represents (right).  The current output 

of each unit is represented by its 

color, black (-1) or white (1).  For 

clarity, connections between the units 

are either -1 (black arrows) or 1 

(white arrows).   
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Units are updated one at a time in random order until the state of the network stops changing.  The 
input to a Hopfield network is the initial pattern, and the output is this stable (unchanging) state. 
 
As an example, consider updating the bottom right node in Figure 6:  The weighted sum of the inputs is 

1( 1) 1(1) 1( 1) 1(1) 1( 1) 5         , which is positive, so the output should change to 1.  Should any 

of the other outputs change? 
 
 
 
 
 
 
 
 
 
 
 
In class we will learn how to choose the weights to ensure that one or more images are stable states of 
the network.  Then when an input (initial image) is presented, the network will proceed to the most 
similar stored image.  We will only consider Hopfield networks with symmetric weights, meaning that 
the weight from unit A to unit B is the same as the weight from unit B to unit A. 

 
 

 

Chapter resources 

 

Vocabulary 

Unit 
Weight 
Supervised learning 
Reinforcement learning 
Unsupervised learning 
Training examples 
Test set 
Learning 
Linear threshold unit (LTU) 
Decision boundary 
Threshold 
Hopfield network 
Stable state 

- + 

- 

- - 

+ 
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LAB 7: Human linear threshold 

                   units 

 
 

 

 

 

Training a Perceptron 

 
You will be working in pairs to train linear threshold units to recognize colors using the Perceptron 
learning rule (taught in class). 
 

1. Choose one partner to start as the LTU, and one to start as the trainer (you’ll switch).  Obtain a 
rule card for the trainer.  The trainer will know the actual rule the LTU should implement and 
will say whether the LTU’s output is correct or incorrect after each training example. 
 

2. The trainer should split the pile of example cards into a training set (~2/3) and a test set (~1/3).  
Set the test set aside. 

 
3. Go through the entire training deck twice, shuffling the cards in between.  For each card, 

a. The trainer looks at the color and makes a decision based on his/her rule regarding what 
the output of the LTU should be (1 or -1).  For instance, if the rule card says “This color 
looks either red or green” and the color looks purple, the output should be -1.  The 
trainer does NOT show the color to the LTU.   

b. The trainer reads the input values to the LTU.  The first input value is always -1 to 
implement a possibly nonzero threshold, as discussed in the reading.  The remaining 
three inputs are red, green, and blue light intensities. 

c. The LTU computes the weighted sum s based on the current weights (initially all zero).  
If s is nonnegative, the output is 1; otherwise the output is -1.   

d.  The trainer tells the LTU whether the output was correct or not.  If the output was 

incorrect, the LTU needs to increment the weights by 0.1 y x , where y  is the correct 

output and the vector x  is the input pattern.  In this case the learning rate is 0.1. 
The LTU should keep track of the computations for each input in the tables provided. 
 

4. Put aside the training deck and move to the test deck.  Now the weights of the LTU are set and 
will no longer vary—we just want to see how well it agrees with the rule on examples it’s never 
seen before.   
 

5. Finally, the trainer can tell the LTU what the “true” or “target” rule was.  Then switch roles with 
a fresh rule card. 
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TRAINING 
 

Input Weights s Output Correct? Change weights by… 

(-1,  (0, 0, 0, 0)     
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TESTING 
Final weights:  

Input s Output Correct? 
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Human Hopfield network 

 
In this part we will go outside to simulate the function of a Hopfield network with two stored images.  
The weights for the network have already been computed, and you will be exploring the behavior of the 
network to discover the stable states.  
 
Each student will act as one unit or “pixel” in an image.  You have a piece of posterboard which can be 
placed white-side-up to signal output 1 or black-side-up to signal output -1.  Along with your 
posterboard will be instructions on how to update your pixel. 
 

1) Start with the initial pattern that has been set up and find one stable state by allowing the 
“neurons” to repeatedly update their values until no one needs to change his/her output value 
anymore.  Record the input and output patterns. 

2) Repeat the process of finding a stable state from a different initial pattern the instructors will set 
up.  Record the input and output patterns. 

3) Explore which input patterns map to which outputs: 
a. Start from one of the stable states and have only one student flip his/her posterboard, 

then proceed to update until you reach a stable state. 
b. Start from one of the stable states and have four students flip their posterboards.  Do 

you still reach the same state?  What if you choose another four students? 
c. Start from one of the stable states and have ALL of the students flip their posterboards. 
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Human LTU homework 
 
 
 
 
 
 
 
 
Part A: Perceptrons 
 
1) What was the first rule your LTU tried to learn?   

a) Summarize its performance on the training set by plotting the fraction of correct decisions 
against the training example number (group five examples together).   

b) How well did it do on the test set (percentage correct)? 
c) Did it “learn” the secret rule?  How might you have improved its performance? 

 
2) What was the second rule your LTU tried to learn? 

a) Summarize its performance on the training set by plotting the fraction of correct decisions 
against the training example number (group five examples together).  It turns out this one was 
impossible for a single LTU to compute.  Do you have evidence that it wasn’t able to learn this 
rule? 

b) Draw a neural network made up of multiple LTUs that could learn this second rule.  You may 
describe what each unit computes in words rather than giving exact weights. 

 
Part B: Hopfield network 
 
3) Prove that if a state of a Hopfield network is stable, so is its “inverse” (with the output of each unit 

flipped from 1 to -1 or vice versa). 
 
4) How accurate would you guess your classmates were in their arithmetic?  Why could we reach a 

stable state without requiring that none of 24 students would make a mistake during the updates? 
  


